Катастрофа самолета Boeing 787-8 авиакомпании Air India в Ахмадабаде 12.06.2025

Только_Поездом, Я ваших советов не спрашивал.

Сколько и каких самолетов вы изучали?
Четыре - A320, B737, RRJ95 и Ту-154. А вы? Будем письками меряться?
Раз все самолёты одинаковые, то к чему тут деление по типам? И зачем вообще изучать разные типы? Все ж одинаковые! Один выучил, и вперёд! - расследовать катастрофы по аналогии, гайки крутить метрическим ключом, компы ресетить! Один допуск на всех.
 
Последнее редактирование:
Реклама
Обсуждается все же катастрофа, а не просто устройство
очередного пепелаца.
А вы правда собрались обсуждать катастрофу B787, не зная его устройства? На основе знаний других типов?
 
Вообще этот канал считается довольно качественным. Там обычно работают над подачей информации, поэтому мне тоже было странно увидеть вот это всё. Я имею в виду, все эти тайные сливы и инсайды. То ли ребята решили хайпануть, то ли действительно могло что-то просочиться в каком-то искажённом виде. Тем более, что результаты расшифровки скорее всего уже давно были. И возможны утечки. Но меня смущает, что до выпуска этого видео версия с водой уже была кем-то запущена, и уж очень это всё на ИИ смахивало... 🤔
Качественный? Работают над подачей информации?
И даже если "утечка" произошла в виде полного бреда - то почему они не задумались над этим перед публикацией?
 
Не очень понятна ваша ирония. Задан вполне понятный вопрос, человеку вроде бы знающему матчасть,
но вместо ответа что-то в духе ЕБН. "Не так сели". Обсуждается все же катастрофа, а не просто устройство
очередного пепелаца. Аналогичные причины могут быть совсем на разных самолетах.
Вопрос не понятный и отдающий теорией конспирации. В самолетах Боинг для перемещения РУДов требуется небольшое усилие руки, не знаю как доходчиво объянить..просто берешь и двигаешь. Еще раз - между РУДами Боинга и Аирбаса НЕТ НИЧЕГО ОБЩЕГО.
 
Четыре - A320, B737, RRJ95 и Ту-154. А вы? Будем письками меряться?
Раз все самолёты одинаковые, то к чему тут деление по типам? И зачем вообще изучать разные типы? Все ж одинаковые! Один выучил, и вперёд! - расследовать катастрофы по аналогии, гайки крутить метрическим ключом, компы ресетить! Один допуск на всех.
Я чуть побольше, МиГ-21, А300/310, А320, В737,В757, В 767 и Ембраер-195.
 
Миг-23, 29, Су-24, Боинг 737, 747, 757, 767, 777, 787. Достаточно?
Для рассуждения о B787 достаточно изучения B787.
Для заявления о том, что все самолёты одинаковые, как видим, недостаточно изучить и девять типов.
 
Вопрос не понятный и отдающий теорией конспирации. В самолетах Боинг для перемещения РУДов требуется небольшое усилие руки, не знаю как доходчиво объяснить..просто берешь и двигаешь. Еще раз - между РУДами Боинга и Аирбаса НЕТ НИЧЕГО ОБЩЕГО.
Насчет Эрбаса Вы заблуждаетесь.
 
mishk , у меня вопрос. судя по схеме допускается попадание воды в двигатель. то есть топливный фильтр пропускает воду и соразмерные молекулы жидкостей. я не нашел на топливной схеме дренажных клапанов (water drain valve) в крыле.
1751192429824.png
 
Реклама
mishk , у меня вопрос. судя по схеме допускается попадание воды в двигатель. то есть топливный фильтр пропускает воду и соразмерные молекулы жидкостей. я не нашел на топливной схеме дренажных клапанов (water drain valve) в крыле.
Посмотреть вложение 862790
Ничего не могу сказать. Не мой профиль.
 
mishk, Вы Эрбас не знаете, поэтому такие странные суждения.
Лучше скажите, можно ли на 787 слега нажав мизинчиком РУД
с места сдвинуть?
Цель выступления: разгрузить mishk от лишних вопросов. Опять меня будет слишком много. Пусть модераторы потерпят. Собрано из нескольких источников и редактировано непострественно в редакторе сайта. Извините за ошибки, если найдете.
ETCM.JPG


1. The engine thrust control module (TCM) supplies control for the forward and reverse thrust of the engines.
2. The TCM is also used for:
- Fuel control
- Autothrottle disconnect
- Takeoff/go-around (TO/GA) commands
- Reverse thrust selection and control.
3. The TCM has these external parts:
- Forward thrust levers (2)
- Reverse thrust levers (2)
- TO/GA switches (2)
- Autothrottle disengage switches (2).
4. The fuel control switches send signals to open or close fuel valves to operate or shutdown the engines.
- They send signals to the remote data concentrators (RDC) and the spar valve start switch relays.
- The spar valve start switch relays use these signals to control the spar valve and the high pressure shut off valve (HPSOV) in the fuel metering unit (FMU).
- The RDCs send the signals to the common data network (CDN) and then to the electronic engine control (EEC) to operate the FMU fuel valves (FMV and HPSOV).
5. The fuel control switches have 2 positions:
- RUN
- CUTOFF.
6. You must pull the switch out of a detent to select a position.
7. The switch handles have red light emitting diodes (LED) that come on when there is an engine fire.
8. Forward and reverse thrust lever position is sensed by 2 thrust lever angle (TLA) resolvers for each engine partitioned within the TCM.
- Each resolver is hardwire connected to a channel (A or B) of the EEC.
- Thrust resolver angle (TRA) is used by the EEC to calculate fuel demand.
9. A T/R lockout solenoid makes sure the T/R levers are locked to prevent accidental deployment of the T/Rs.
System Description Section (SDS)
The engine thrust control module (TCM) supplies control for the forward and reverse thrust of the engines.
The TCM is also used for:
- Fuel control
- Autothrottle disconnect
- Takeoff/go-around (TO/GA) commands.
Physical Description
The TCM has a housing with an internal partition that isolates the left and right sections. Each section has these parts:
- Forward thrust lever
- Reverse thrust lever
- Autothrottle disconnect switch
- TO/GA switch
- Thrust reverser (T/R) lock mechanism
- Resolver mechanism
- Servo motor
- Interface connector.
The 2 printed-circuit boards and ARINC 429 interface are in isolated aluminum enclosures that attach to the TCM and connect with a cable harness.
One fuel control switch is in each section of the housing. Each switch has a connector to permit replacement on the without removal of the TCM.
Redundant components are included in the linkage between each thrust lever, reverse thrust lever, and the resolvers. This gives a safety feature for single
point or dormant failures in the system.
Switches
The takeoff/go-around (TO/GA) switches are 3 single-pole, single-throw snap action switches. The switches are on the forward part of each forward thrust lever knob and operate with 28v dc.
The autothrottle (A/T) disconnect switches are a momentary push-button, single-pole single-throw, double-break unit. The switches are on the outboard side of each throttle knob and operate with 28v dc.
The fuel control switches are on a plate on the front of the TCM below the thrust levers. The fuel control switches have RUN and CUTOFF positions.
Each switch has a detent to prevent accidental movement. The switch handles have internal red light emitting diodes (LED) that come on when a related engine fire condition is sensed. Each switch is a toggle type with a cap. The cap can be removed for replacement of the internal LED lamp.
Reverse Thrust Lever
You can move the reverse thrust levers at the idle power position only. The reverse thrust lever is blocked when the forward thrust lever is forward of idle a minimum of 3 degrees. The forward thrust lever is blocked when a reverse thrust lever is moved more than 8.5 degrees.
Each lever travel is 87 degrees from the stowed to maximum movement position. A bidirectional detent gives pilot indication. The detent force is 6 lbs (2.7 kg).
An additional friction adjust mechanism sets the reverse thrust lever operation feel independently from the forward thrust lever friction mechanism as a safety feature. Track lock and directional control valve (DCV) is at 21 degrees of reverse thrust lever angle. Lever travel is interrupted at 45 degrees with the solenoid operated interlock mechanism in the TCM. The interlock releases when the solenoid is energized by a signal when the T/R sleeves are deployed. The lock release lets the reverse thrust lever go to the maximum reverse thrust position.
The T/R switches use 28v dc. The interlock mechanism and solenoid operates with a maximum 5 lbs (2.4 kg) force applied to the reverse thrust levers. The solenoid has a circuit that regulates the current flow to maximize solenoid pull force. This gives maximum current at initial stroke and minimum current after full stroke.
Position Resolvers
Each lever operates 2 isolated resolvers through a dual gear/linkage drive.
This gives redundancy and safety for single point failures.
Autothrottle
The thrust management system controls the autothrottle servo drive. The servo drive system gives 2-way communication with the autothrottles on the ARINC 429 interface. Built-in test (BIT) is included in the servo drive system.
Servo motors drive the levers directly through a worm/gear system with a high gear ratio. This gives a lever speed of 0.5 to 15 degrees per second. The servomotors drive the levers through a friction clutch that permits manual override by the crew while in thrust management control. The mechanism has 2 motor control units (MCU) and 1 signal conversion unit (SCU). The units are in an aluminum enclosure.
Electronics Box
The printed circuit (PC) boards are in an aluminum housing on the TCM housing. It interfaces with the module through 5 connectors. The electronics box is environmentally sealed for protection.
Operation - Engine Thrust Control Module
1. Each thrust lever mechanically connects to 2 thrust lever angle (TLA) resolvers, which send thrust lever resolver angle (TRA) data to the EEC for
thrust control.
2. The thrust control system can continue normal operation with a failure of one resolver.
3. The EEC reads each winding and validates that the voltage is in range.
- If the signals pass these electrical checks, but the 2 TRA signals disagree, the EEC selects the higher value to maintain maximum thrust setting capability and selects the value closest to idle for thrust control malfunction accommodation (TCMA) to protect against uncontrolled high thrust (UHT) on the ground.
4. If both TRA signals are out of range, the last valid TRA value is used.
5. If both resolvers fail electrically, the EEC holds the last valid value for 2 seconds, then sets the engine thrust to idle.
- Default to idle thrust is acceptable because it only affects one engine.
6. The thrust management function (TMF) of the common core system (CCS) supplies thrust command signals to the autothrottle servo motors to operate the thrust levers.
7. The reverse thrust levers are on the thrust levers.
8. The TO/GA switches send signals to the autoflight and the thrust management function (TMF) to start the TO/GA mode.
9. The autothrottle disconnect switches send signals to the TMF to disengage the autothrottle.
10. The fuel control module (FCM) is on the aft end of the thrust control module
- It sends signals to open or close fuel valves to operate or shutdown the engines
11. The FCM sends signals to the:
- Spar valve start switch relays
- Common data network (CDN).
12. The spar valve start switch relays use these signals to control the spar valve and the high pressure shutoff valve (HPSOV) in the FMU.
13. Remote data concentrators (RDC) send fuel control module signals to the CDN.
- The signals go to the engine electronic controller (EEC) to operate the fuel metering unit (FMU), fuel metering valves (FMV), and high pressure shutoff valve (HPSOV).
14. TRA shows on the engine propulsion control system (ECPS) page.
15. The T/R lockout solenoid usually is not energized.
- It operates with the lockout arm to block the reverse thrust levers when a thrust lever is forward of the idle position (this is an interlock mechanism).
- This interlock also blocks the thrust levers when they are at idle and a reverse thrust lever moves.
- The T/R lockout solenoid and lockout arm blocks the reverse thrust levers when the thrust lever is forward of idle.
16. The T/R lockout solenoid also energizes by a command from the EEC when conditions are correct to operate the T/Rs.
- This lets full movement of the reverse thrust levers.
- The T/R lockout solenoid and lockout arm blocks the reverse thrust levers when the thrust lever is forward of idle.
17. When the fuel control switch is set to the RUN position:
- Airplane electrical system power is removed from the FMU shut-off coil to enable the engine fuel shutoff valve to open by the EEC command when sufficient fuel pressure is provided by the engine rotation to open the valve
- Airplane electrical system power is supplied to the open winding of the airplane spar valve motor
- Airplane electrical system power is supplied to the engine ignition system which then can be turned on or off by the EEC
- Airplane electrical system power is supplied to the EEC until sufficient power is provided by the permanent magnetic alternator (PMA)
- Airplane electrical system power is supplied to the engine monitoring unit (EMU).
System Description Section (SDS)
General
The thrust lever and autothrottle assembly supply thrust commands to the electronic engine control (EEC). You use the thrust levers to make manual inputs. The autothrottle servo motor (ASM) makes automatic inputs.
Thrust Lever
When you move the forward thrust lever, the movement goes down to the thrust lever crank. The forward thrust lever and crank turn on the same shaft.
The crank connects to the ASM. The ASM turns the rotor of the TLA resolver.
The resolver sends a thrust resolver angle (TRA) signal to the EEC.
When the forward thrust lever is not at idle, the lever latch holds the reverse thrust lever down. When the forward thrust lever is at idle, you can lift the reverse thrust lever. When the reverse thrust lever is up, the latch holds the forward thrust lever at idle.
The ASM turns a shaft in the thrust lever assembly through a gearbox. The ASM brake turns the rotor of the TLA resolver and at the same time moves the thrust lever.
Fuel Control Switch
Each fuel control switch controls 2 relays in the power distribution panels. The relays control many functions.
These are the relays:
- Engine fuel control relay 1
- Engine fuel control relay 2.
Engine fuel control relay 1 controls the fuel metering unit shutoff valve.
Engine fuel control relay 2 controls these functions:
- Spar valve control
- Fuel control switch position to the bus power control unit (BPCU)
- EEC channel reset signal
- Fire handle lock solenoid.
 
mishk , у меня вопрос. судя по схеме допускается попадание воды в двигатель. то есть топливный фильтр пропускает воду и соразмерные молекулы жидкостей. я не нашел на топливной схеме дренажных клапанов (water drain valve) в крыле.
Посмотреть вложение 862790
Man drain vlv - это не оно?
 
Цель выступления: разгрузить mishk от лишних вопросов. Опять меня будет слишком много. Пусть модераторы потерпят. Собрано из нескольких источников и редактировано непострественно в редакторе сайта. Извините за ошибки, если найдете.
Посмотреть вложение 862789

1. The engine thrust control module (TCM) supplies control for the forward and reverse thrust of the engines.
2. The TCM is also used for:
- Fuel control
- Autothrottle disconnect
- Takeoff/go-around (TO/GA) commands
- Reverse thrust selection and control.
3. The TCM has these external parts:
- Forward thrust levers (2)
- Reverse thrust levers (2)
- TO/GA switches (2)
- Autothrottle disengage switches (2).
4. The fuel control switches send signals to open or close fuel valves to operate or shutdown the engines.
- They send signals to the remote data concentrators (RDC) and the spar valve start switch relays.
- The spar valve start switch relays use these signals to control the spar valve and the high pressure shut off valve (HPSOV) in the fuel metering unit (FMU).
- The RDCs send the signals to the common data network (CDN) and then to the electronic engine control (EEC) to operate the FMU fuel valves (FMV and HPSOV).
5. The fuel control switches have 2 positions:
- RUN
- CUTOFF.
6. You must pull the switch out of a detent to select a position.
7. The switch handles have red light emitting diodes (LED) that come on when there is an engine fire.
8. Forward and reverse thrust lever position is sensed by 2 thrust lever angle (TLA) resolvers for each engine partitioned within the TCM.
- Each resolver is hardwire connected to a channel (A or B) of the EEC.
- Thrust resolver angle (TRA) is used by the EEC to calculate fuel demand.
9. A T/R lockout solenoid makes sure the T/R levers are locked to prevent accidental deployment of the T/Rs.
System Description Section (SDS)
The engine thrust control module (TCM) supplies control for the forward and reverse thrust of the engines.
The TCM is also used for:
- Fuel control
- Autothrottle disconnect
- Takeoff/go-around (TO/GA) commands.
Physical Description
The TCM has a housing with an internal partition that isolates the left and right sections. Each section has these parts:
- Forward thrust lever
- Reverse thrust lever
- Autothrottle disconnect switch
- TO/GA switch
- Thrust reverser (T/R) lock mechanism
- Resolver mechanism
- Servo motor
- Interface connector.
The 2 printed-circuit boards and ARINC 429 interface are in isolated aluminum enclosures that attach to the TCM and connect with a cable harness.
One fuel control switch is in each section of the housing. Each switch has a connector to permit replacement on the without removal of the TCM.
Redundant components are included in the linkage between each thrust lever, reverse thrust lever, and the resolvers. This gives a safety feature for single
point or dormant failures in the system.
Switches
The takeoff/go-around (TO/GA) switches are 3 single-pole, single-throw snap action switches. The switches are on the forward part of each forward thrust lever knob and operate with 28v dc.
The autothrottle (A/T) disconnect switches are a momentary push-button, single-pole single-throw, double-break unit. The switches are on the outboard side of each throttle knob and operate with 28v dc.
The fuel control switches are on a plate on the front of the TCM below the thrust levers. The fuel control switches have RUN and CUTOFF positions.
Each switch has a detent to prevent accidental movement. The switch handles have internal red light emitting diodes (LED) that come on when a related engine fire condition is sensed. Each switch is a toggle type with a cap. The cap can be removed for replacement of the internal LED lamp.
Reverse Thrust Lever
You can move the reverse thrust levers at the idle power position only. The reverse thrust lever is blocked when the forward thrust lever is forward of idle a minimum of 3 degrees. The forward thrust lever is blocked when a reverse thrust lever is moved more than 8.5 degrees.
Each lever travel is 87 degrees from the stowed to maximum movement position. A bidirectional detent gives pilot indication. The detent force is 6 lbs (2.7 kg).
An additional friction adjust mechanism sets the reverse thrust lever operation feel independently from the forward thrust lever friction mechanism as a safety feature. Track lock and directional control valve (DCV) is at 21 degrees of reverse thrust lever angle. Lever travel is interrupted at 45 degrees with the solenoid operated interlock mechanism in the TCM. The interlock releases when the solenoid is energized by a signal when the T/R sleeves are deployed. The lock release lets the reverse thrust lever go to the maximum reverse thrust position.
The T/R switches use 28v dc. The interlock mechanism and solenoid operates with a maximum 5 lbs (2.4 kg) force applied to the reverse thrust levers. The solenoid has a circuit that regulates the current flow to maximize solenoid pull force. This gives maximum current at initial stroke and minimum current after full stroke.
Position Resolvers
Each lever operates 2 isolated resolvers through a dual gear/linkage drive.
This gives redundancy and safety for single point failures.
Autothrottle
The thrust management system controls the autothrottle servo drive. The servo drive system gives 2-way communication with the autothrottles on the ARINC 429 interface. Built-in test (BIT) is included in the servo drive system.
Servo motors drive the levers directly through a worm/gear system with a high gear ratio. This gives a lever speed of 0.5 to 15 degrees per second. The servomotors drive the levers through a friction clutch that permits manual override by the crew while in thrust management control. The mechanism has 2 motor control units (MCU) and 1 signal conversion unit (SCU). The units are in an aluminum enclosure.
Electronics Box
The printed circuit (PC) boards are in an aluminum housing on the TCM housing. It interfaces with the module through 5 connectors. The electronics box is environmentally sealed for protection.
Operation - Engine Thrust Control Module
1. Each thrust lever mechanically connects to 2 thrust lever angle (TLA) resolvers, which send thrust lever resolver angle (TRA) data to the EEC for
thrust control.
2. The thrust control system can continue normal operation with a failure of one resolver.
3. The EEC reads each winding and validates that the voltage is in range.
- If the signals pass these electrical checks, but the 2 TRA signals disagree, the EEC selects the higher value to maintain maximum thrust setting capability and selects the value closest to idle for thrust control malfunction accommodation (TCMA) to protect against uncontrolled high thrust (UHT) on the ground.
4. If both TRA signals are out of range, the last valid TRA value is used.
5. If both resolvers fail electrically, the EEC holds the last valid value for 2 seconds, then sets the engine thrust to idle.
- Default to idle thrust is acceptable because it only affects one engine.
6. The thrust management function (TMF) of the common core system (CCS) supplies thrust command signals to the autothrottle servo motors to operate the thrust levers.
7. The reverse thrust levers are on the thrust levers.
8. The TO/GA switches send signals to the autoflight and the thrust management function (TMF) to start the TO/GA mode.
9. The autothrottle disconnect switches send signals to the TMF to disengage the autothrottle.
10. The fuel control module (FCM) is on the aft end of the thrust control module
- It sends signals to open or close fuel valves to operate or shutdown the engines
11. The FCM sends signals to the:
- Spar valve start switch relays
- Common data network (CDN).
12. The spar valve start switch relays use these signals to control the spar valve and the high pressure shutoff valve (HPSOV) in the FMU.
13. Remote data concentrators (RDC) send fuel control module signals to the CDN.
- The signals go to the engine electronic controller (EEC) to operate the fuel metering unit (FMU), fuel metering valves (FMV), and high pressure shutoff valve (HPSOV).
14. TRA shows on the engine propulsion control system (ECPS) page.
15. The T/R lockout solenoid usually is not energized.
- It operates with the lockout arm to block the reverse thrust levers when a thrust lever is forward of the idle position (this is an interlock mechanism).
- This interlock also blocks the thrust levers when they are at idle and a reverse thrust lever moves.
- The T/R lockout solenoid and lockout arm blocks the reverse thrust levers when the thrust lever is forward of idle.
16. The T/R lockout solenoid also energizes by a command from the EEC when conditions are correct to operate the T/Rs.
- This lets full movement of the reverse thrust levers.
- The T/R lockout solenoid and lockout arm blocks the reverse thrust levers when the thrust lever is forward of idle.
17. When the fuel control switch is set to the RUN position:
- Airplane electrical system power is removed from the FMU shut-off coil to enable the engine fuel shutoff valve to open by the EEC command when sufficient fuel pressure is provided by the engine rotation to open the valve
- Airplane electrical system power is supplied to the open winding of the airplane spar valve motor
- Airplane electrical system power is supplied to the engine ignition system which then can be turned on or off by the EEC
- Airplane electrical system power is supplied to the EEC until sufficient power is provided by the permanent magnetic alternator (PMA)
- Airplane electrical system power is supplied to the engine monitoring unit (EMU).
System Description Section (SDS)
General
The thrust lever and autothrottle assembly supply thrust commands to the electronic engine control (EEC). You use the thrust levers to make manual inputs. The autothrottle servo motor (ASM) makes automatic inputs.
Thrust Lever
When you move the forward thrust lever, the movement goes down to the thrust lever crank. The forward thrust lever and crank turn on the same shaft.
The crank connects to the ASM. The ASM turns the rotor of the TLA resolver.
The resolver sends a thrust resolver angle (TRA) signal to the EEC.
When the forward thrust lever is not at idle, the lever latch holds the reverse thrust lever down. When the forward thrust lever is at idle, you can lift the reverse thrust lever. When the reverse thrust lever is up, the latch holds the forward thrust lever at idle.
The ASM turns a shaft in the thrust lever assembly through a gearbox. The ASM brake turns the rotor of the TLA resolver and at the same time moves the thrust lever.
Fuel Control Switch
Each fuel control switch controls 2 relays in the power distribution panels. The relays control many functions.
These are the relays:
- Engine fuel control relay 1
- Engine fuel control relay 2.
Engine fuel control relay 1 controls the fuel metering unit shutoff valve.
Engine fuel control relay 2 controls these functions:
- Spar valve control
- Fuel control switch position to the bus power control unit (BPCU)
- EEC channel reset signal
- Fire handle lock solenoid.
Многовато лишнего, но главное в тексте есть. Усилие на РУДах - 2,7 кг.
 
Man drain vlv - это не оно?
1. The refuel/jettison manifold drain valve drains the refuel/jettison manifold after refueling or jettison operation.
- This increases usable fuel.
2. The drain valve lets fuel drain from the manifold to the center fuel tank when the fuel level in the center tank is below the valve.
3. There is 1 valve in each wing, between ribs 1 and 2.
System Description Section (SDS)
The refuel/jettison manifold drain valve drains the refuel/jettison manifold after a refuel or jettison operation. This increases the quantity of usable fuel.
General
The drain valve lets the fuel drain from the manifold into the center fuel tank when all of these conditions exist:
- Fuel pressure decreases in the refuel/jettison manifold
- Fuel is in the center tank below the valve
- An outboard refuel valve is open in flight below a fuel level of 720 gal (2725 l). This is approximately 5000 lb (2268 kg).
There is a drain valve at the bottom of the manifold in each side of the center fuel tank. The valve is between the side of body (SOB) rib and rib 2 in each wing.
Physical Description
The valve is a poppet type valve that is spring-loaded to the open position.
When there is no pressure in the manifold, the open valve lets the remaining fuel drain into the fuel tank.
During refuel or jettison operations, the higher pressure of the fuel in the manifold closes the poppet valve. Then fuel does not go through the drain valve into the tank.
There is also a swing check valve on the outlet that is spring loaded closed.
The swing check valve prevents an opposite flow of fuel from the tank to the manifold.
 
Реклама
Назад