Новости компании Lockheed Martin

Чо-та как-то бестолковая затея имхо (если это достоверно)!?
Смысл какой был в такой эквилибристике, тем более по 10 раз в день!? Из бомберов тогда был реально только Хастлер, из истребителей, любой попавшийся, но размерность-то никак не коррелировала с будущим SST? (ну типа можно было снизить высоту для соответствующего увеличения мощности звукового фронта...)!?

Кстати буквально на днях у нас был грозовой фронт, молния бабахнула, очень не хило километрах буквально в +/-3х... Было делйствительно не комфортно, но как--то ни у кого стёкла непосыпались,, как об этом вопили что в Америке что в Союзе при пролетах Конкорда/Ту-144!? А то куры перестают нестись, у коров надои падают, а из свинарников стекла выпадают...

Ну и совершенно понятно что SST должны были/будут летать по специально выделенным коридорам и на определённых высотах по крайней мере над заселенными территориями. С этим никто ни когда не спорил!

 
Последнее редактирование:
Это написано в том числе в официальной истории ФАА, так что достоверность истории не вызывает ни малейших сомнений. Смысл был в том, чтоб понять будут ли жалобы и будут ли эти жалобы обоснованы (часть граждан жаловались на заведомую липу, типа грохота в 4 утра, когда конечно никто не летал на сверхзвуке). Посмотреть динамику жалоб по мере привыкания, что очень важно - собрать достоверную статистику по вреду для строений (этого боялись).
 
И какова была динамика?
Няп протесты у а/п JFK были по поводу шума на взлёте/посадке!?
 
Это было сильно позже и имело мало отношения к реальному шуму. Динамика была вполне нормальная, собственно потому в тот момент и запустили ССТ
 
 
- где-то теряют, где-то находят

 
C-130 и сейчас живее всех живых!

 
Самолет получился легче чем по расчетам. Конструктора очень удивились!
Правда, еще не летал. И не должен.
 
Реакции: SDA
Lockheed Martin ведет разработки гиперзвукового самолёта-разведчика VKontakte | VK
 
Реакции: SDA
Возможные варианты эволюции F-35.

At Lockheed Martin Aeronautics in Fort Worth, engineers are looking back at the F-16 program for insights into how best to evolve the F-35, which is expected to remain in production for more than a decade, based on the current backlog.

In particular, they are looking at how the arrow-wing F-16XL was developed as a company-funded initiative to evolve the F-16 from its origins as a lightweight combat aircraft into a long-range strike fighter. Cummings similarly takes the F-16XL as a starting point.

“I believe one way Lockheed Martin can meet its goals is by employing two strategies,” he says. One is stretching the airframe to add fuel and improve fineness ratio, as well as adding lifting area with a canard or more wing area. The second is to use thrust vectoring to eliminate the tail.

Starting in April, Cummings developed three conceptual designs for evolved F-35s based on past Lockheed experimental projects; the new designs offer short-, medium- and long-term improvements in performance and increased stealth.


In the near-term F-35EX concept, the fuselage is stretched 60 in., similar to the F-16XL, and vertical and horizontal tails are replaced by a canard foreplane and multi-axis thrust vectoring. The latter is based on the Low-Observable Axisymmetric Nozzle first flown on an F-16C in 1992 and the Axisymmetric Vectoring Exhaust Nozzle now fitted to the X-62A VISTA (Variable In-flight Stability Test Aircraft), a highly modified two-seat F-16D.

“The short length of the F-35, combined with the fuselage cross-sections necessary to contain weapon bays and landing gear, contribute to a poor fineness ratio,” Cummings says. “This is the main reason the F-35 cannot supercruise. The F-16XL solved this problem with a 56-in. fuselage stretch.” Stretching the fuselage increases fineness ratio for higher lift-to-drag ratio in supersonic flight while adding volume for fuel and equipment.

Cummings’ F-35EX concept employs the maximum amount of F-35A and F-35C components, including using the larger F-35C wing with a canard for pitch control and maximum lift. The fuselage stretch adds 4,000 lb. of fuel volume, he calculates. Another 1,500 lb. of fuel is housed in an external tank with the same outer mold line as the F-35C external gun pod. Together they increase fuel capacity by 30% over the baseline F-35C. Cummings sees the F-35EX as a near-term alternative to the U.S. Navy’s F/A-XX.



The midterm F-35FX concept uses the core F-35EX fuselage but employs technologies from another past Lockheed experimental program, the conceptual X-44 MANTA (Multi-Axis No-Tail Aircraft). Derived from the F-22, the X-44 was intended to test the feasibility of full-authority pitch, roll and yaw control without a conventional empennage, relying purely on three-dimensional thrust vectoring.

The tailless F-35FX has a clipped-delta planform similar to the MANTA for lower radar cross-section and better supersonic area distribution, as well as an advanced, stealthy 3D vectoring nozzle. With the stretched fuselage and larger wing, total internal fuel volume is about 30,000 lb., Cummings calculates, 50% more than the F-35A.



The F-35GX is a long-term concept that maximizes low observability. This configuration starts with the F-35FX layout and modifies the forward fuselage shape to a straight 70-deg. chine. The inlets are moved under the chine. The wing tips are clipped to match the 70-deg. chine angle, and all aft edges—wing, fairing and nozzles—are aligned to reduce radar signature.

The spirit of the F-16XL is evident in Cummings’ concepts, but evolving the F-35 may not be as easy as it was for the F-16, for technical and financial reasons.

In December 1980, General Dynamics CEO David Lewis gave the Fort Worth division $53 million in company funds (more than $200 million today) to build two F-16XL flight-test prototypes. “We aren’t about to sit on our laurels and risk the F-16 becoming obsolescent,” Lewis said in an article in The Wall Street Journal cited by Albert Piccirillo in his book on the F-16XL, Elegance in Flight.

The Air Force provided two F-16A development aircraft for modification into F-16XLs, one of which had been damaged when its nose landing gear failed. Component manufacturing began in January 1981, and the first aircraft flew on July 3, 1982—19 months after Lewis greenlit the program.

That speed of execution was due in part to the F-16’s design, as the wing attached to the side of the body, making it relatively straightforward structurally to change the wing. This was done with the F-16XL as well as with Japan’s F-16-based Mitsubishi F-2, which has a bigger wing and longer fuselage.

In the F-35, the wing and fuselage structure are integrated to reduce weight. This could make it more complicated to stretch the fuselage and replace the wing. For this reason, Cummings located the rear wing spar on all three concepts with the rear wing-spar fuselage carry-through structure.

“When we did the YF-23, three of the most labor-intensive, painful things were the crew station and canopy, the weapon bay and the landing gear—and especially the landing gear relationship to the weapon bay,” Cummings says. “These things are all done on the F-35. Compared to those three things, implementation of new wings and other components are much less complex. So the F-35 has a running start.”

Ultimately, the F-16XL lost to Boeing’s F-15E in the Air Force’s Dual-Role Fighter competition, but the F-16 continued to evolve, culminating in the Block 70 variant still in production today. Whether Lockheed decides that evolving the F-35 justifies a similarly substantial investment of company R&D funding will become clear in the months ahead.
с Darold Cummings, chief configurator for Northrop’s YF-23 fighter
 
Lockheed Martin’s Skunk Works is taking work it did to compete for the U.S. Air Force’s sixth-generation fighter and applying it to a new stealthy, survivable Collaborative Combat Aircraft (CCA) design for both U.S. and international customers.

The new Vectis uncrewed combat aircraft will fly in two years, with the goal of providing air-to-air, air-to-surface and surveillance missions alongside crewed aircraft.

O.J. Sanchez, vice president and general manager of Skunk Works, told reporters the Vectis design takes work from the sixth-generation prototype that the company built and flew, along with the RQ-170 low-observable uncrewed aircraft vehicle (UAS) and “other systems in the classified spaces.”

“Skunk Works is charting a critical path with this Vectis program to unlock new integrated capabilities at an ultracompetitive speed and price point,” Sanchez says. “Vectis provides best-in-class survivability at the CCA price point.”


Vectis comes from extensive operational analysis within Skunk Works, where the company modeled the system flying with Lockheed’s F-22s and F-35s. As the U.S. Air Force is determining requirements for the next increment of its CCA program, specifically how survivable and capable the aircraft should be, Skunk Works has decided to proceed with a reusable design that appears to be on the high end of the spectrum. Though Skunk Works did not provide a cost estimate, it is likely to be more expensive than other designs that focus more on being attritable.

“Should the Air Force find they need a highly survivable platform with the flexibility that Vectis enables for Increment II, I think it’ll be a great candidate,” Sanchez says.

The aircraft is large for the CCA class. Sanchez says it is smaller than the company’s F-16 but larger than the comparatively low-cost Common Multi-Mission Truck—an air vehicle designed to be launched from the company’s Rapid Dragon palletized system off the back of a cargo aircraft.

Sanchez would not identify the engine that will be used in Vectis, just that it is “sized appropriately to be able to fly alongside and work with” crewed aircraft. The company’s operational analysis shows that the ability for the aircraft to be supersonic is not necessary, he says.

“I wouldn’t go as far as to say supersonic is what we see is needed in this space,” he says.

While the company is pitching the design potentially for the Air Force’s CCA program and timing the announcement with the beginning of the Air and Space Force’s convention, Sanchez says it is also potentially applicable for the U.S. Navy’s similar program and international partners. The latter point appears to pit Vectis against the similar Boeing MQ-28 Ghost Bat.

Sanchez says Vectis is “aligned with” the U.S. Air Force’s government-reference architecture that is used to bring on independent mission systems for CCAs. The company is designing it to be flexible for different missions, he says.

“I would see Vectis’ flexibility that’s being built in, along with its survivability, being very attractive to multiple mission problem sets, and then the agility and the way we’re doing flexible payload design can be tailored toward specific countries or programs as they need,” he says.

The stealthy, survivable design that is capable of being a daily flyer appears to be a shift in the Skunk Works’ approach to CCAs. Last year, Sanchez’s predecessor John Clark told Aviation Week that the group’s operational analysis (OA) showed CCAs largely becoming expensive targets—surviving just long enough to do their designated role and then at best becoming decoys. Sanchez says that analysis was done for the specific CCA Increment I competition at the time. Since then, OA has evolved with different designs and tactics in mind.

“Operational analysis is robust,” he says. “It’s not a singular point in time. There are design trades that we’ve made in this and mission applications where we clearly see the opportunity for a reusable, highly survivable and flexible platform like Vectis.”