Катастрофа Boeing-777 над Украиной

Статус
Закрыто для дальнейших ответов.
Вы издеваетесь? Ракета будет доворачивать постепенно все время с момента потери скорости. На последних 1000 метрах (чуть более 1,5 сек) ее скорость упадет не более чем на 50 м/с, то есть, угол доворота на этих последних 1000 м будет примерно тот же arctg(65/1000)=3,7 градуса.
А давайте для простоты понимания представим, что скорость ракеты последовательно снижаясь приблизилась к нулю.
При этом до цели еще 1000 м.
И цель летит равномерно со скоростью 250 м/с встречным курсом с маленьким углом 5 градусов, к примеру.
Метод будет пытаться заставить ракету доворачивать в направлении точки упреждения, но приближаться к этой точке ракета уже не может. При этом цель проносится мимо со скоростью 250 м/с.
Так наглядно?

Опять присоединюсь к коллеге - Ваша модель больше похожа на погоню - там этот эффект - искривление траектории при подлете к цели - гораздо заметнее. Посмотрите на коэффициенты пропорциональности.
С коэффициентами пропорциональности все в порядке.
 
Последнее редактирование:
Реклама
Да, я думал, что речь про 9м38м1.
Для модели ракеты с графиков 25 км - макс дальность, поэтому да, она достигается только с большими углами запуска, конечно.
Вот если бы Вы или кто-нибудь другой хотя бы грубо прикинули графики для 9м38м1, можно было бы легко подсунуть их в модель и посмотреть на разницу в результатах
 
Я ранее говорил про угол и энергетику
Ваш вопрос : "Я вот просто не могу понять, в чем целесообразность угол-то увеличивать для дальних целей?"
http://uploads.ru/QMsHO.jpg
http://uploads.ru/VwyMz.jpg
Графики от угла для 9М38М1 будут похожими, скорость только повыше.
График объявлялся для 9М38
Спасибо, сейчас целесообразность больших углов стала весьма очевидна.
Если я правильно понял, там расчеты для ракет, запускаемых лишь вверх
 
Ракету-то можно любую нарисовать
Можно ли там задать точку перехвата цели?
И можно ли там пустить ракету под углом 60 градусов?
Если можно, вытаскивайте скорее оттуда результаты стрельбы по боингу )
 
А давайте для простоты понимания представим, что скорость ракеты последовательно снижаясь приблизилась к нулю.
При этом до цели еще 1000 м.
И цель летит равномерно со скоростью 250 м/с встречным курсом с маленьким углом 5 градусов, к примеру.
Метод будет пытаться заставить ракету доворачивать в направлении точки упреждения, но приближаться к этой точке ракета уже не может. При этом цель проносится мимо со скоростью 250 м/с.
Так наглядно?

Извините, простоты Вы не добавили: Вы вообще вышли за пределы граничных условий:
- в Вашем примере не существует упрежденной точки встречи
- очевидно, что при абсолютном падении скорости равном константе относительное падение растет и для малых скоростей ракеты (менее 300 м/с - то есть, когда падение скорости за 1 сек составляет уже более 10% и более от самой скорости)
угол доворота _теоретически_ будет расти. Но это не имеет никакого отношения к реальности. В реальности относительное падение скорости невелико и поэтому угол доворота всегда будет небольшим.

Вот если бы Вы или кто-нибудь другой хотя бы грубо прикинули графики для 9м38м1, можно было бы легко подсунуть их в модель и посмотреть на разницу в результатах

Моя оценка: возьмите этот график, разбейте на 3 участка: стартовая прямая, маршевый режим и инерциальный полет.
С каждым из этих участков сделайте следующее:
1) продолжите прямые стартовые на 1 сек. - до 4,2 сек, до достижения скорости порядка 800 м/с.
2) прямые маршевые укоротите на 3 сек., оставив наклоны (можно чуть увеличить наклон, чтобы на максимуме было 1100 м/с,
но это не сильно принципиально)
3) инерциальные участки параллельным переносом присоедините к концам прямых маршевых участков.
Это будет, имхо, очень близко к 9М38М1.
 
Извините, простоты Вы не добавили: Вы вообще вышли за пределы граничных условий:
- в Вашем примере не существует упрежденной точки встречи
Откуда столь смелое, поспешное и неправильное заключение?
- очевидно, что при абсолютном падении скорости равном константе относительное падение растет и для малых скоростей ракеты (менее 300 м/с - то есть, когда падение скорости за 1 сек составляет уже более 10% и более от самой скорости)
угол доворота _теоретически_ будет расти. Но это не имеет никакого отношения к реальности. В реальности относительное падение скорости невелико и поэтому угол доворота всегда будет небольшим.
Чепуха
Я Вам привел наглядный пример, а Вы в мутные абстрактные фантазии ударились.
Вот, кстати, как эта ситуация (в моем примере) выглядит реально:
(синяя линия заканчивается обнулением скорости ракеты; если увеличить здесь: https://plot.ly/~vval/463.embed масштаб рисунка, то видно, что скорость увеличения угла быстро нарастает)
newplotpng_4964769_19399850.png


Моя оценка: возьмите этот график, разбейте на 3 участка: стартовая прямая, маршевый режим и инерциальный полет.
С каждым из этих участков сделайте следующее:
1) продолжите прямые стартовые на 1 сек. - до 4,2 сек, до достижения скорости порядка 800 м/с.
2) прямые маршевые укоротите на 3 сек., оставив наклоны (можно чуть увеличить наклон, чтобы на максимуме было 1100 м/с,
но это не сильно принципиально)
3) инерциальные участки параллельным переносом присоедините к концам прямых маршевых участков.
Это будет, имхо, очень близко к 9М38М1.
Спасибо, попробую. Правда вот тут уже выложили сильно похожие на дело:
http://aviaforum.ru/threads/katastrofa-boeing-777-nad-ukrainoj.40060/page-216#post-1788785
http://uploads.ru/Mx249.png
 
Откуда столь смелое, поспешное и неправильное заключение?
Напомню: упрежденная точка - это точка, до которой ракета _долетает_, то есть точка, которая по определению находится в зоне поражения.
Если по пути к ней у ракеты скорость падает до 0, то цель выходит из зоны поражения. Никакие методы не помогут ее поразить.

Я Вам привел наглядный пример, а Вы в мутные абстрактные фантазии ударились.
Вот, кстати, как эта ситуация (в моем примере) выглядит реально:

Это у Вас в примере мутная и абстрактная фантазия: Ракета изначально никуда не полетит, исходя из представленных данных - так как предполагаемая точка встречи находится за пределами зоны поражения.
 
Реклама
Напомню: упрежденная точка - это точка, до которой ракета _долетает_, то есть точка, которая по определению находится в зоне поражения.
Если по пути к ней у ракеты скорость падает до 0, то цель выходит из зоны поражения. Никакие методы не помогут ее поразить.

Это у Вас в примере мутная и абстрактная фантазия: Ракета изначально никуда не полетит, исходя из представленных данных - так как предполагаемая точка встречи находится за пределами зоны поражения.
В путаете метод и конкретное его воплощение в железе
Ежу понятно, что ракета просто не стартанет, если цель за пределами зоны поражения
Но разговор-то о методе наведения был
Если Вы мне хотите открыть глаза на то, что в моей модели не заложены ограничения по зонам поражения, - то спасибо КЭП :)
 
В путаете метод и конкретное его воплощение в железе
Ежу понятно, что ракета просто не стартанет, если цель за пределами зоны поражения
Но разговор-то о методе наведения был
Если Вы мне хотите открыть глаза на то, что в моей модели не заложены ограничения по зонам поражения, - то спасибо КЭП :)
Нет, я не путаю как раз. Я Вам в предыдущем своем сообщении написал, что при неучете граничных условий метод _будет давать_ большие углы доворотов - при небольших скоростях ракеты, когда относительное падение скорости начнет быть существенным. Но в реальности, с учетом граничных условий (минимальная скорость ракеты) таких углов не будет.
На Вашем же графике - выделите цветом часть траектории ракеты до достижения скорости 400 м/с. - там будет практически прямая. А увеличение угла доворота начинается как раз при падении скорости ниже этой отметки, о чем я и пишу.
 
Последнее редактирование:
Нет, я не путаю как раз. Я Вам в предыдущем своем сообщении написал, что при неучете граничных условий метод _будет давать_ большие углы доворотов - при небольших скоростях ракеты, когда относительное падение скорости начнет быть существенным. Но в реальности, с учетом граничных условий (минимальная скорость ракеты) таких углов не будет.
Ну, значит я просто не понял смысл Вашего последнего сообщения.
И тогда вообще нет предмета для спора, ибо консенсус :)
 
В учебнике по СОУ упоминается 9М38 (не М1) и скорость больше 1100:
image006.jpg
Думаю, что это все-таки 9М38М1, так как у 9М38 курсовой параметр максимальный - 18 км и дальность максимальная 25-30 км.
Да и пособие 2006 года - к тому моменту 9М38 вряд ли уже имело смысл изучать.
 
Насчет создать любую - это понятно
А тот Бук, что Вы показывали, - это Вы просто создали или готовый где-то взяли?
Ведь важен вопрос точных характеристик ракеты, а не просто сделать что-то похожее
 
Реклама
Мне лень было возиться с координатами Зарощенского, и я ведь делал модель по Зарощенскому с целью сравнить с моделью АА.
Поэтому я просто взял данные АА с 18-го слайда их чудесной презентации:
А мне было не лень.
С Зарощенским не совпадает.
Поэтому и говорю, что слайд - лажа. Хотя бы потому, что не были приведены расчётные координаты пуска.
Время полёта ракеты, однако, А=А определено с внушающей трепет погрешностью. :D
 
Статус
Закрыто для дальнейших ответов.
Назад